Three-Component Synthesis of Polysubstituted Pyrroles from α -Diazoketones, Nitroalkenes, and Amines

2011 Vol. 13, No. 17 4668–4671

ORGANIC **LETTERS**

Deng Hong, Yuanxun Zhu, Yao Li, Xufeng Lin, Ping Lu,* and Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China pinglu@zju.edu.cn; orgwyg@zju.edu.cn

Received July 13, 2011

ABSTRACT

Polysubstituted pyrroles are regiospecifically synthesized via the copper-catalyzed three-component reaction of α -diazoketones, nitroalkenes, and amines under aerobic conditions. The cascade process involves an N-H insertion of carbene, a copper-catalyzed oxidative dehydrogenation of amine, and a $[3 + 2]$ cycloaddition of azomethine ylide.

Pyrroles represent an important class of heterocycles in organic chemistry. They are structural units in many natural products and pharmaceuticals and are key intermediates for the synthesis of a variety of biologically active molecules and functional materials.¹ As the world's

(2) Thompson, R. B. FASEB J. 2001, 15, 1671.

- (3) (a) Hantzsch, A. Ber. 1890, 23, 1474. (b) Palacios, F.; Aparico, D.; Santos, J. M.; Vicario, J. Tetrahedron 2001, 57, 1961. (c) Trautwein, A. W.; Süssmuth, R. D.; Jung, G. Bioorg. Med. Chem. Lett. 1998, 8, 2381.
- (4) (a) Knorr, L. Ber. 1884, 17, 1635. (b) Paal, C. Ber. 1885, 18, 367. (c) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801.

(5) (a) Bullington, J. L.; Wolff, R. R.; Jackson, P. F. J. Org. Chem. 2002, 67, 9439. (b) Katritzky, A. R.; Zhang, S.; Wang, M.; Kolb, H. C.; Steel, P. J. J. Heterocycl. Chem. 2002, 39, 759. (c) Washizuka, K.-I.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1999, 55, 969.

10.1021/ol201891r C 2011 American Chemical Society Published on Web 08/10/2011

leading cholesterol-lowering drug, atorvastatin calcium (Lipitor) is a prime example.2 The conventional methods for the construction of a pyrrole ring include the Hantzsch reaction,³ the Paal-Knorr synthesis,⁴ and various cycloaddition methods.⁵ A number of metal-catalyzed approaches were also developed.6 Still, general and efficient strategies for the synthesis of pyrroles from simple and readily available precursors are of great value due to the continued importance of the pyrrole core in both biological and chemical fields.

Multicomponent reactions (MCRs) have emerged as powerful and bond-forming efficient tools in organic, combinatorial, and medicinal chemistry for their facileness and efficiency as well as their economy and ecology in organic synthesis.7 These features make MCRs well suited

^{(1) (}a) Pyrroles, Part II; Jones, R. A., Ed.; Wiley: New York, 1992. (b) Trofimov, B. A.; Sobenina, L. N.; Demenev, A. P.; Mikhaleva, A. I. Chem. Rev. 2004, 104, 2481. (c) Novak, P.; Muller, K.; Santhanam, K. S. V.; Haas, O. Chem. Rev. 1997, 97, 207. (d) Higgins, S. J. Chem. Soc. Rev. 1997, 26, 247. (e) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213. (f) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Luh, T. Y. J. Am. Chem. Soc. 2000, 122, 4992. (g) Boyce, C. W.; Labrili, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54. (h) Domingo, V. M.; Aleman, C.; Brillas, E.; Julia, L. J. Org. Chem. 2001, 66, 405.

⁽⁶⁾ For selected examples, see: (a) Benedetti, E.; Lemiere, G.; Chapellet, L.-L.; Penoni, A.; Palmisano, G.; Malacria, M.; Goddard, J.-P.; Fensterband, L. Org. Lett. 2010, 12, 4396. (b) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674. (c) Saito, A.; Konishi, O.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (d) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (e) Kramer, S.; Madsen, J. L. H.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2010, 12, 2758. (f) Chiba, S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313. (f) Ferreira, V. F.; De Souza, M. C. B. V. A.; Cunha, C.; Pereira, L. O. R.; Ferreira, M. L. G. Org. Prep. Proced. Int. 2001, 33, 411.

^{(7) (}a) Meijere, A. D.; Zezschwitz, P. V.; Bräse, S. Acc. Chem. Res. 2005, 38, 413. (b) Hussain, M. M.; Walsh, P. J. Acc. Chem. Res. 2008, 41, 883. (c) Sun, X. L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937. (d) Wasike, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001. (e) Enders, D.; Hüttl, M. R. M.; Grondal, C.; Rabbe, G. Nature 2006, 441, 861. (f) Trost, B. M.; Frontier, A. J. J. Am. Chem. Soc. 2000, 122, 11727. (g) Trost, B. M.; Gutierrez, A. C.; Livingston, R. C. Org. Lett. 2009, 11, 2539. (i) Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. (j) Ganem, B. Acc. Chem. Res. 2009, 42, 463. (k) Zheng, Y.-B.; Zhao, Z.-G.; Wang, M.; Stang, P. J. J. Am. Chem. Soc. 2010, 132, 16873.

^{(8) (}a) Zhu, J. Eur. J. Org. Chem. 2003, 1133. (b) Willy, B.; Müller, T. J. J. Curr. Org. Chem. 2009, 13, 1777. (c) Davide, B.; Rosario, R.; Rodolfo, L. Curr. Org. Chem. 2010, 14, 332. (d) Jiang, B.; Rajale, T.; Wever, W.; Tu, S.; Li, G. Chem. Asian J. 2010, 5, 2318. (e) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101. (f) D'Souza, D. M.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095.

for the construction of diversified heterocyclic scaffolds from readily available materials.⁸ Recently, this strategy has found its applications in the synthesis of pyrroles.⁹

As a part of our ongoing research on development of multicomponent approaches to heterocycles, 10 we were interested in the rapid construction of a polysubstituted pyrrole ring via the copper-catalyzed three-component reaction of α -diazoketones, nitroalkenes and amines under aerobic conditions. The reaction involves the assembling of the pyrrole core from $[1+2+2]$ atom fragments (Scheme 1).

Scheme 1. Synthesis of Pyrroles via MCRs

Table 1. Optimization of Reaction Conditions^a

We began our studies by evaluating the reaction of 2-diazo-1-phenylethanone (1a), (2-nitrovinyl)benzene (2a), and phenylmethanamine $(3a)$ using Cu(OTf)₂ as catalyst. Simple heating of a mixture of the three components and $Cu(OTf)$ ₂ in THF under atmosphere led to the formation of the desired product 4a, albeit in only 44% yield (Table 1, entry 1). We then examined other triflates, such as AgOTf (Table 1, entry 2), $Zn(OTf)_2$ (Table 1, entry 3), $Sc(OTf)_3$ (Table 1, entry 4), $Yb(OTf)$ ₃ (Table 1, entry 5), and In(OTf)₃ (Table 1, entry 6), but found that they did not work for this one-pot reaction. By altering $Cu(OTf)$ ₂ to CuOTf (Table 1, entry 7), the reaction proceeded well and gave a better yield (50%). It meant that either Cu (II) or Cu (I) would be essential for this reaction. Thus, we tested copper sources. CuBr₂ (Table 1, entry 8), Cu(OAc)₂ (Table 1, entry 9), and CuO (Table 1, entry 10) were found to be able to promote the reaction but in relatively lower yields. CuBr (Table 1, entry 11) or CuI (Table 1, entry 12) worked for this reaction with comparative yields. Increasing the amount of catalyst to 20 mol % only slightly raised the yield (Table 1, entry 13). Further screening of reaction conditions revealed that the yields largely depended on the reaction temperature (Table 1, entry 14). When the reaction was carried out at 25° C, it did not occur at all (Table 1, entry 15). Solvent also highly affected the reaction (Table 1, entries $16-18$). Since this reaction involved an oxidation process, we examined the other oxidant instead of air. When t-BuOOH was added, yield was slightly improved (Table 1, entry 19), similar with the case of bubbling the reaction with oxygen (Table 1, entry 20). Finally, we selected CuOTf (10 mol %) as catalyst and THF as solvent to perform the reaction under atmosphere for 12 h.

^a Reaction conditions: 1a (0.75 mmol), 2a (0.5 mmol), 3a (0.75 mmol), catalyst (0.05 mmol), solvent (8 mL), air, 12 h. $\rm ^{b}$ Yield of the isolated product. c Catalyst (0.10 mmol). d t-BuOOH (0.75 mmol) was added. ^e Reaction was under oxygen (1 atm).

With the optimized reaction conditions in hand, we tested the substrate diversity. A steady increment of yields could be seen by varying the substituent on 1 from electron donating group to electron withdrawing group (Table 2, entries $1-5$) and $16-18$). When the nitro group occupied on the *para* position (1e), the highest yield was reached (Table 2, entry 5). Structure of 4b was confirmed by X- ray analysis (Figure 1). When ethyl α -diazoacetate was used instead of α -Diazoketone, reaction occurred, but without isolable products. Then, we examined the substitute effect on Michael acceptor 2 (Table 2, entries $6-13$). The yields varied from 49% to 70% without significant trends.

Aliphatic nitroalkenes also afforded the corresponding products, but with relatively lower yields (Table 2, entries 14 and 15). With substituents occupied α -position of

^{(9) (}a) Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72, 1811. (b) Martín, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379. (c) Yan, R. L.; Luo, J.; Wang, C. X.; Ma, C. W.; Huang, G. S.; Liang, Y. M. J. Org. Chem. 2010, 75, 5395. (d) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674. (e) Ackermann, L.; Sandmann, R.; Kaspar, L. T. Org. Lett. 2009, 11, 2031. (f) St-Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366. (g) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402. (h) Attanasi, O. A.; Favi, G.; Mantellini, F.; Moscatelli, G.; Santeusanio, S. J. Org. Chem. 2011, 76, 2860. (i) Cadierno, V.; Gimeno, J.; Nebra, N. Chem.--Eur. J. 2007, 13, 9973. (j) Braun, R. U.; Müller, T. J. J. Synthesis 2004, 2391. (k) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465. (l) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681.

^{(10) (}a) Wang, J.; Wang, J. J.; Zhu, Y. X.; Lu, P.; Wang, Y. G. Chem. Commun. 2011, 47, 3275. (b) Chen, Z. B.; Hong, D.; Wang, Y. G. J. Org. Chem. 2009, 74, 903. (c) Shen, Y.; Cui, S. L.; Wang, J.; Chen, X. P.; Lu, P.; Wang, Y. G. Adv. Synth. Catal. 2010, 352, 1139. (d) Hong, D.; Lin, X. F.; Zhu, Y. X.; Lei., M.; Wang., Y. G. Org. Lett. 2009, 11, 5678. (e) Hong, D.; Chen., Z. B.; Lin, X. F.; Wang, Y. G. Org. Lett. 2010, 12, 4608. (f) Lu, P.; Wang, Y. G. Synlett 2010, 165. (g) Hong, D.; Zhu, Y. X.; Lin, X. Y.; Wang, Y. G. Tetrahedron 2011, 67, 650.

Table 2. Copper-Catalyzed Multicomponent Synthesis of Pyrrole 4 a

 $\ddot{}$

^{*a*} Reaction conditions: 1 (1.5 mmol), 2 (1 mmol), 3 (1.5 mmol), Cu(OTf) (0.1 mmol), THF (8 mL), air, 12 h. b Yield of the isolated product.

nitroalkenes $(2l-2o)$, reactions performed smoothly and the desired products were obtained (Table 2, entries 16–21). Substituent effect on the benzyl amine was not significant (Table 2, entries $22-26$). When *n*-butyl amine or n-octyl amine was used instead of 3a, no desired product was detected. Similar result was observed for 2-phenylethanamine. When allyl amine was used, the desired 4A was obtained in 46% yield (Table 2, entry 27). Altering the primary amine into secondary amine, neither N-methylbenzylamine nor N-sulfonylbenzylamine worked for the reaction and 2 was recovered quantitatively.

Figure 1. X-ray crystal structure of 4b.

On the basis of these results, a tentative mechanism for this three-component reaction is postulated in Scheme 2. In the presence of copper catalyst, α -ketocarbene generated from α -diazoketone 1a is traped by benzylamine (3a) to form A through N-H insertion.¹¹ Then, amine A undergoes a copper-catalyzed oxidative dehydrogenation to form imine **B** through activation of $sp³$ C-H adjacent to nitrogen.¹² **B** then generates azomethine ylide C , which is trapped by the *trans* nitroalkene $2a$ to produce the pyrrolidine 5 via a copper-catalyzed exoselective $[3 + 2]$ cycloaddition.¹³ Finally, **4a** is obtained by the thermal extrusion of $HNO₂$ accompanying the

(13) For recent reviews about the $[3 + 2]$ cycloadditions of azomethine ylides, see: (a) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968. (b) Stanley, L.M.; Sibi,M. P. Chem. Rev. 2008, 108, 2887. (c) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132. (d) Nair, V; Suja, T. D. Tetrahedron 2007, 63, 12247. For selected examples, see: (e) Li, G. Y.; Chen, J.; Yu, W. Y.; Hong, W.; Che, C. M. Org. Lett. 2003, 5, 2153. (f) Teng, H. L.; Huang, H.; Tao, H. Y.; Wang, C. J. Chem. Commun. 2011, 47, 5494. (g) Xue, Z. Y.; Fang, X.; Wang, C. J. Org. Biomol. Chem. 2011, 9, 3622. (h) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010, 49, 7895. (i) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338. (j) Padilla, S.; Tejero, R.; Adrio, J.; Carretero, J. C. Org. Lett. 2010, 12, 5608.

^{(11) (}a) Alonso, M. E; Morales, A.; Chitty., A. W. J. Org. Chem. 1982, 47, 3747. (b) Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.

⁽¹²⁾ For selected examples of imine formations via the copper-catalyzed oxidative dehydrogenation of amines, see: (a) Li, Z.; Li, C. $-J$. J. Am. Chem. Soc. 2004, 126, 11810. (b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (d) Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047. (e) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928. (f) Basle, O.; Li, C.-J. Org. Lett. 2008, 10, 3661. (g) Shen., Y.-M.; Li., M.; Tan., Z.; Guo., C.-C. Chem. Commun. 2009, 953. (h) Yu, C. G.; Zhang, Y.; Zhang, S. L.; Li, H.; Wang, W. Chem. Commun. 2011, 47, 1036.

Scheme 2. Possible Mechanism for the Formation of 4a

dehydrogenative aromatization. The pyrrolidine 5 could be separated before the reaction was completed and its structure was unambiguously confirmed by single-crystal X-ray analysis (Figure 2).

Figure 2. X-ray crystal structure of 5.

A demonstration of the interesting synthetic utility of this method is shown in Scheme 3. The resulting products 4g and 4t could be easily transformed to the polycyclic compounds 6a and 6b via the Pd-catalyzed intramolecular $C-C$ coupling reaction, and the products are potentially useful scaffolds for the synthesis of biologically active Scheme 3. Concise Synthesis of Polycyclic Compounds 6

compounds and photophysical materials. The structure of compound 6b was unambiguously confirmed by single crystal X-ray analysis (Figure 3).

Figure 3. X-ray crystal structure of 6b.

In summary, we have developed an efficient approach to polysubstituted pyrroles via a copper-catalyzed three-component reaction of α -diazoketones, nitroalkenes, and amines under aerobic conditions. The cascade process involves an N-H insertion of carbene, a copper-catalyzed oxidative dehydrogenation of amine, and a $[3 + 2]$ cycloaddition of azomethine ylide. Due to the easy availability of the starting materials and potential utilities of products, this method might be useful in organic synthesis and medicinal chemistry.

Acknowledgment. We thank the National Nature Science Foundation of China (No. 21032005 and 20972137) for financial support.

Supporting Information Available. Detailed experimental procedures, characterization data, copies of ${}^{1}H, {}^{13}C$ spectra, and crystallographic information files (CIF) for compounds 4b, 5 and 6b. This material is available free of charge via the Internet at http://pubs.acs.org.